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Stock Models

In Part I, we obtained various results on option prices without any assumptions on
the evolution of future stock prices {St}t≥0.

Ultimately, we are unable to find an exact price of an option in a model-free setting.

Definition (Statistical Model)

A statistical model is a mathematical model consisting of a set of statistical
assumptions for the purposes of generating sample data and making predictions.

We will now look at different models of the stock price process {St}t≥0.

⇒ In essence, we are going to introduce a probability measure P that describes the
behaviour of stock prices.
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One-Period Binomial Model - Introduction

The simplest stock model is the one-period binomial model:

Definition (One-period Binomial Model)

Under the one-period binomial model, there is only one fixed time period, after which
a stock can take either of two different values, each with positive probability.

We will use the letter h to denote the length of this period.

The single time period is the time interval between time t = 0 and t = h.

At time t = h, the stock can take only one of two different values. Specifically,
either:

1 Sh = uS0 with probability pu, or

2 Sh = dS0 with probability 1− pu := pd . Note that pu, pd ∈ (0, 1).
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One-Period Binomial Model - Stock Price

In other words,

P(Sh = uS0) = pu, and P(Sh = dS0) = pd = 1− pu .

We will assume that u > d > 0. Therefore u is the “upwards factor”, and d is the
“downwards factor”.

The evolution of the stock price over this time period is:

S0

uS0

dS0

pu

pd
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One-Period Binomial Model - Bond Price

As before, we also assume that it is possible to invest at the risk-free rate r .

Under the one-period binomial model, evolution of the value of a $1 loan is:

B0 = 1

Bh = erh1

An investor can form portfolios consisting of stocks and bonds in fixed
proportions. We now have a more precise definition of a portfolio:

Definition (Stock-Bond Portfolio)

A stock-bond portfolio is a pair of real numbers θ = (∆, b) ∈ R2, which represents a
position of ∆ units of stock and b units of a bond (or alternatively, a $b loan).
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One-Period Binomial Model - Arbitrage

Let
{
V θ
t

}
t≥0

denote the value process of a portfolio θ. A stock-bond portfolio

θ = (∆, b) has value process V θ
t = ∆St + b · bt = ∆St + bert .

Now that we have a probability measure P, we have the following slightly refined
definition of arbitrage:

Definition (Arbitrage Opportunity)

An arbitrage opportunity is a portfolio value process {V θ
t }t≥0 such that:

(i) V θ
0 ≤ 0, and,

(ii) At the end of the period h, we have P(V θ
h ≥ 0) = 1 and P(V θ

h > 0) > 0.

Note that in this definition, there is arbitrage if we can make a (strictly positive)
profit with positive probability.

Michael Boyuan Zhu Part II - Discrete-Time Models 7/134



One-Period Binomial Model - Arbitrage

Again, we will take as an axiom the Principle of No Arbitrage:

Definition (Principle of No Arbitrage)

There are no arbitrage opportunities in this market.

We can now start proving some results. As a first example, we have the following
result, which essentially says that the bond cannot always be worse (or better)
than the stock.

Proposition

The Principle of No Arbitrage holds in the one-period binomial model if and only if

d < erh < u .
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One-Period Binomial Model - Arbitrage

Proof.

We will show that the Principle of No Arbitrage implies that d < erh < u. Suppose for
the sake of contradiction that erh ≥ u. We will show that this will yield an arbitrage
opportunity.

Consider the stock-bond portfolio θ = (∆, b) = (−1,S0). Then at time 0, we have

V θ
0 = ∆S0 + ber ·0 = −S0 + S0 = 0 .

Note that in the one-period binomial model, we are only concerned with the future
time h. At time h we have

V θ
h = ∆Sh + berh = −Sh + S0e

rh .

Michael Boyuan Zhu Part II - Discrete-Time Models 9/134



One-Period Binomial Model - Arbitrage

Proof (cont’d).

With probability pu > 0, we have

V θ
h = −uS0 + S0e

rh = S0(erh − u) ≥ 0 .

On the other hand, with probability pd > 0, we have

V θ
h = −dS0 + S0e

rh = S0(erh − d) > S0(erh − u) ≥ 0 .

Therefore we have found an arbitrage opportunity, since P(Vh ≥ 0) = 1 and
P(Vh > 0) ≥ pd > 0. We conclude that erh < u. As an exercise, it is possible to show
the other inequality d < erh in the same manner, by considering the portfolio (1,−S0).

For those interested in the converse (the “if” part in the “if and only if”), see
Proposition 2.3 in Björk.
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One-Period Binomial Model - Risk-Neutral Measure
Suppose that d < erh < u. Then erh is a convex combination of d and u. That is,
there exists a number qu ∈ (0, 1) such that

erh = quu + (1− qu)d .

We will let qd = 1− qu. The reason for this suspicious choice of notation will
become clear very soon.

Conversely, if there exists such a number qu ∈ (0, 1), it is easy to see that
d < erh < u. Hence, we have proven the following:

Lemma

We have d < erh < u if and only if there exists some qu ∈ (0, 1) such that

erh = quu + qdd ,

where qd = 1− qu.
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One-Period Binomial Model - Risk-Neutral Measure

Now let’s take the previous equation and multiply both sides by the current stock
price S0. Rearranging a little, we get:

erh = quu + qdd

S0e
rh = quuS0 + qddS0

S0 = e−rh(quuS0 + qddS0)

Let Q be a probability measure, defined such that Q(Sh = uS0) = qu and
Q(Sh = dS0) = qd . Then the above expression simplifies to

S0 = e−rhEQ[Sh] .

In other words, the current stock price is the expectation of the future stock price
under Q, discounted at the risk-free rate.
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One-Period Binomial Model - First Fundamental Theorem of Asset Pricing

The measure Q we have constructed is important enough to warrant its own
name.

Definition (Risk-Neutral Measure)

A risk-neutral measure is a probability measure Q such that

S0 = e−rhEQ[Sh] .

Over the past few slides, we have proven the following:

Theorem (First Fundamental Theorem of Asset Pricing (FTAP 1))

In the one-period binomial model, The Principle of No Arbitrage holds if and only if
there exists a risk-neutral measure.
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One-Period Binomial Model - Risk-Neutral Pricing

The risk-neutral measure is important because we can use it to price derivatives.

The payoff of a contingent claim at time h is a function of Sh. Let X denote the
payoff. Then we have X = Φ(Sh) for some function Φ.

For example, for a call option, we have Φ(Sh) = max{Sh − K , 0}.

The function Φ is sometimes called the contract function.

In the next section, we will prove the following, for the one-period binomial model:

Proposition (Risk-Neutral Pricing)

Let ΠX (t) be the price of the derivative X at time t. Then

ΠX (0) = e−rhEQ[X ] = e−rhEQ[Φ(Sh)] .
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One-Period Binomial Model - More on the Risk-Neutral Measure

The risk-neutral measure is a “fake” measure, since it does not actually represent
the probabilities of anything in the market.

In general, P 6= Q. That is, the risk-neutral measure is not the physical measure.

The risk-neutral measure is perhaps best interpreted as a mathematical tool to help
us find prices of derivatives.

The risk-neutral measure is called “risk-neutral” because of the pricing formula. If
P were replaced by Q, then the prices of everything are expectations discounted
by the risk-free rate. The measure Q gets rid of all risk premiums in the market.

Note that the pricing formula does not depend on P! This is counter-intuitive,
and something that takes some time to get used to.

One way to think about it is that changing pu and pd will change the probability of
the outcomes of a contract X . However, it also changes the probability of the
outcomes of the replicating portfolio too, and these cancel out.
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One-Period Binomial Model - Risk-Neutral Probabilities

From before, we saw that the risk-neutral probabilities in the one-period binomial
model satisfy

erh = quu + qdd .

This is an equation with one unknown. Rearranging, we have the following
formulas:

qu =
erh − d

u − d
,

qd =
u − erh

u − d
.
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One-Period Binomial Model:
Risk-Neutral Pricing
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One-Period Binomial Model - Completeness
We will now prove the risk-neutral pricing formula. As before, we will construct
replicating portfolios and apply the Law of One Price. The price of the replicating
portfolio will be given precisely by the risk-neutral pricing formula.

We first give some official definitions of these concepts that we saw in Part I.

Definition (Attainability)

A contingent claim X = Φ(Sh) is attainable if there exists a portfolio θ such that

V θ
h = X .

In this case, θ is a replicating portfolio for X .

Definition (Completeness)

A market is complete if it is arbitrage-free and all contingent claims are attainable.
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One-Period Binomial Model - Completeness

Proposition

If the one-period binomial model is arbitrage-free, then it is complete.

Proof.

Let X = Φ(Sh) be the payoff of a derivative. We try to construct a replicating
stock-bond portfolio θ∗ := (∆∗, b∗). This is a replicating portfolio if its payoff
∆∗Sh + b∗erh matches that of X .

In the one-period binomial model, Sh is either uS0 or dS0, so X is either Φ(uS0) or
Φ(dS0). Therefore if (∆∗, b∗) is a replicating portfolio, it must solve

Φ(uS0) = ∆∗uS0 + b∗erh

Φ(dS0) = ∆∗dS0 + b∗erh .
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One-Period Binomial Model - Completeness

Proof (cont’d).

This is a system of two linear equations and two unknowns. Solving for (∆∗, b∗) gives

∆∗ =
Φ(uS0)− Φ(dS0)

(u − d)S0
,

and

b∗ = e−rh uΦ(dS0)− dΦ(uS0)

u − d
.

Therefore, every contingent claim is attainable, through the above replicating
portfolio.

Remark

We will see much later on that ∆∗ is the delta of this derivative (i.e. the change in the
derivative’s price per change in stock price). This is why we use the letter ∆.
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One-Period Binomial Model - Risk-Neutral Pricing

We now prove the risk-neutral pricing formula for the one-period binomial model.

Proposition (Risk-Neutral Pricing, One-Period Binomial Model)

If the market is arbitrage free, then the current price ΠX (0) of a derivative with payoff
X = Φ(Sh) at maturity h is

ΠX (0) = e−rhEQ[X ] = e−rhEQ[Φ(Sh)] .

Proof.

We have seen that we can replicate the derivative with the portfolio θ∗ = (∆∗, b∗)
from the previous Proposition. By the Law of One Price, the derivative and the
replicating portfolio must have the same price. That is,

ΠX (0) = V θ∗
0 = ∆∗S0 + b∗ .
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One-Period Binomial Model - Risk-Neutral Pricing

Proof.

Plugging in the formulas for ∆∗ and b∗, we have

ΠX (0) = V θ∗
0 = ∆∗S0 + B∗

=
Φ(uS0)− Φ(dS0)

(u − d)S0
× S0 + e−rh uΦ(dS0)− dΦ(uS0)

u − d

= e−rh

[
erh(Φ(uS0)− Φ(dS0))

(u − d)
+

uΦ(dS0)− dΦ(uS0)

u − d

]
= e−rh

[
Φ(uS0)

(
erh − d

u − d

)
+ Φ(dS0)

(
u − erh

u − d

)]
= e−rh [Φ(uS0)qu + Φ(dS0)qd ]

= e−rhEQ[Φ(Sh)] .
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One-Period Binomial Model - Example

Essentially, we have condensed the entire replicating portfolio argument into a
single formula that is easy to use.

In the following example, we will see how to compute prices using the following
three steps:

1 Replace the measure P with the risk-neutral measure Q:

S0

uS0

dS0

pu

pd

becomes S0

uS0

dS0

qu

qd

.

2 Compute the expectation of the terminal payoff under Q, EQ[Φ(Sh)].

3 Discount back to time 0 using the risk-free rate to get the price e−rhEQ[Φ(Sh)].

Michael Boyuan Zhu Part II - Discrete-Time Models 23/134



One-Period Binomial Model - Example

Example

Suppose a non-dividend paying stock follows a one-period binomial model with
S0 = 100, u = 1.1 and d = 0.9, and h = 6 months. Calculate the current price of a
6-month call option on this stock with strike price K = 105. Assume the risk-free rate
is r = 5%.

We use the risk-neutral pricing formula. The first step is to find the risk-neutral
measure by finding qu and qd . Using our formulas from before, we have

qu =
erh − d

u − d
=

e0.05×0.5 − 0.9

1.1− 0.9
= 0.6266 ,

qd = 1− qu = 0.3734 .
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One-Period Binomial Model - Example

Example

Next, we find the expectation of the payoff of the call under the risk-neutral
measure Q. Under Q, we have:

100

110

90

qu

qd

Sh

5

0

Φ(Sh)

Therefore we have

EQ[Φ(Sh)] = 5× qu + 0× qd = 5× 0.6266 = 3.1329 ,

ΠX (0) = e−rhEQ[Φ(Sh)] = e−0.05×0.5 × 3.1329 = $3.06 .
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Multiperiod Binomial Model:

Introduction
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Multiperiod Binomial Model - Introduction

The multiperiod binomial extends the one-period binomial model to multiple
periods.

Suppose we are given a fixed time horizon T .

We can split T into k := T/h periods of length h.

Specifically, for each t = 0, h, 2h, . . . ,T − h, we assume that

St+h = StZt ,

where Z0,Zh, . . . ,ZT−h are i.i.d. random variables, with distribution

Z =

{
u with probability pu

d with probability pd
.

In essence, this is a bunch of independent one-period models stuck together.
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Multiperiod Binomial Model - Introduction

k = 2 periods:

S0

dS0

d2S0

udS0

uS0

udS0

u2S0

pu

pd

pu

pd

pu

pd
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Multiperiod Binomial Model - Introduction
k = 3 periods:

S0

dS0

d2S0

d3S0

ud2S0

udS0

ud2S0

u2dS0uS0

udS0

ud2S0

u2dS0

u2S0

u2dS0

u3S0

pu

pd

pu

pd

pu

pd

pu

pd

pu

pd

pu

pd
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Multiperiod Binomial Model - Introduction

And as before, we also have a risk-free asset that earns a continuously
compounded interest rate r .

The price of a $1 loan over three periods is:

B0 = 1
erh

e2rh
e3rh = erT = BT

1
1

1
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Multiperiod Binomial Model - Portfolios

We see that as the number of periods increases, we can get more and more
possible payoffs at time T . As we take k →∞, we can approximate ST as if it
were a continuous random variable.

However, we will not be able to replicate all payoffs with a simple stock-bond
portfolio held to time T .

In order to replicate payoffs in the multiperiod model, we will need to adjust our
portfolio over time. This is called rebalancing.

We now need new definitions for portfolios and arbitrage, which encompass the
possibility of rebalancing.
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Multiperiod Binomial Model - Portfolios

Definition (Portfolio Strategy)

A portfolio strategy is a stochastic process θ = {θt}t=0,h,...,T where:

For each t, θt = (∆t , bt) is a function of S0, . . . ,St−h.

∆t denotes the number of shares of stock at time t − h that are held until time t.

bt denotes the value of the risk-free asset at time t − h that is held until time t.

We set θ0 = (∆h, bhe
−rh) by convention.

⇒ We can think of a portfolio strategy as a series of stock-bond portfolios (one for
each time period).

⇒ Note that a portfolio strategy is allowed to depend on the evolution of the stock
so far.
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Multiperiod Binomial Model - Portfolios

Definition (Value Process)

The value process of the portfolio strategy θ = {θt}t=0,h,...,T is the stochastic process
{V θ

t }t=0,h,...,T , where
V θ
t = ∆tSt + bte

rh .

That is, V θ
t is the market value at time t of the portfolio θ.

Note that by convention, V θ
0 = ∆hS0 + bh.
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Multiperiod Binomial Model - Portfolios

Definition (Self-Financing)

A portfolio strategy θ = {θt}t=0,h,...,T is called self-financing if for all
t = h, 2h, . . . ,T − h:

∆tSt + bte
rh︸ ︷︷ ︸

Money in

= ∆t+hSt + bt+h︸ ︷︷ ︸
Money out

.

⇒ If at time t we sell the portfolio, we get ∆tSt + bte
rh. This is just enough money

to buy the portfolio that we intend to hold for the next time period, which costs
∆t+hSt + bt+h.

⇒ Self-financing portfolios are usually what we are concerned with, since the price of
a self-financing portfolio is its time-0 price. There are no withdrawals or
contributions to the portfolio after time 0.
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Multiperiod Binomial Model - Arbitrage

Definition (Arbitrage Opportunity)

An arbitrage opportunity is a self-financing portfolio strategy θ such that:

(i) V θ
0 ≤ 0 , and,

(ii) At expiry T , we have P(V θ
T ≥ 0) = 1 and P(V θ

T > 0) > 0.

As always, we will take as an axiom the Principle of No Arbitrage.

Definition (Principle of No Arbitrage)

There are no arbitrage opportunities in this market.
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Multiperiod Binomial Model - Arbitrage

Similar to the one-period model, we have the following result. The proof is
omitted, but one direction of the result should be obvious.

Proposition

The Principle of No Arbitrage holds in the multiperiod model if and only if

d < erh < u .

Again, this inequality is true if and only if erh is a convex combination of u and d .
So we can define qu, qd as before...
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Multiperiod Binomial Model - Risk-Neutral Measure

Definition (Risk-Neutral Measure)

A risk-neutral measure is a probability measure Q such that for each
t = 0, h, . . . ,T − h,

St = e−rhEQ[St+h

∣∣ S0, . . . ,St] = e−rhEQ[St+h

∣∣ St]
We will verify that the measure Q under which Z0,Zh, . . . ,ZT−h are i.i.d. with
distribution

Z =

{
u with probability qu

d with probability qd
,

is indeed a risk-neutral measure.
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Multiperiod Binomial Model - Risk-Neutral Measure

For any time t = 0, h, . . . ,T − h and any possible stock price s,

e−rhEQ[St+h|St = s] = e−rhEQ[StZt |St = s]

= se−rhEQ[Zt |St = s]

= se−rhEQ[Zt ]

= se−rh(uqu + dqd︸ ︷︷ ︸
erh

)

= s .
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Multiperiod Binomial Model - Risk-Neutral Measure

We have proven the following:

Theorem (First Fundamental Theorem of Asset Pricing (FTAP 1))

In the multiperiod binomial model, The Principle of No Arbitrage holds if and only if
there exists a risk-neutral measure.

As before, the real strength of the risk-neutral measure is that it will help us price
derivatives, by giving us a concise formula that we can use. This is the focus of
the following section.
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Multiperiod Binomial Model:

Risk-Neutral Valuation
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Multiperiod Binomial Model - Completeness

Similar to the one-period binomial model, we can show that every contingent
claim can be replicated by a self-financing portfolio. First, some definitions of
familiar concepts in this context:

Definition (Contingent Claim)

A contingent claim is a random variable X = Φ(S0,Sh, . . . ,ST ), where Φ is a
deterministic contract function. The interpretation is that X denotes the payoff of a
derivative at the terminal time T .

Definition (Attainability)

A contingent claim X = Φ(S0,Sh, . . . ,ST ) is attainable if there exists a self-financing
portfolio strategy θ∗ such that

V θ∗
T = X .
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Multiperiod Binomial Model - Completeness

Definition (Completeness)

A market is complete if it is arbitrage-free and all contingent claims are attainable.

Proposition

If the multiperiod binomial model is arbitrage-free, then it is complete.
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Multiperiod Binomial Model - Completeness

Proof (Sketch).

A formal proof of this would require induction and would be extremely tedious.

Instead, we can see that this is true by going backwards along the tree. The final time
period is essentially a one-period binomial model, which we know is complete and can
be replicated at time T − h. If the cost of this replicating portfolio matches the market
value of this replicating portfolio, then we can rebalance into the replicating portfolio
and still satisfy the self-financing condition.

Hence, we just need that the market value of our portfolio at T − h matches the value
of the replicating portfolio. We can then shrink the tree by removing the final period.
Repeating this process until time 0 gives the desired self-financing portfolio.
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Multiperiod Binomial Model - Price Processes

We can now conclude using the Law of One Price that the price of a derivative X
must be the same as the price of the replicating portfolio strategy θ∗:

ΠX (0) = V θ∗
0 .

However, we can actually do something better in this case: we can apply the Law
of One Price at every node of the tree, not just the root! Doing so proves the
following:

Proposition

If θ∗ is a replicating portfolio strategy for X , then for every t = 0, h, 2h, . . . ,T,

ΠX (t) = V θ∗
t .
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Multiperiod Binomial Model - Price Processes

Note that V θ∗
t is a function of the stock prices up to time t. By the previous

result, this means that ΠX (t) is also a function of stock prices up to time t.

In other words, if we know what node we are at, we know what the value of
ΠX (t) is.

This property is important enough to warrant its own definition:

Definition (Adapted Process)

A stochastic process {Yt}t≥0 is adapted (to {St}t≥0) if for each time j , the value of
Yj is determined by {St}j≥t≥0.

Therefore, the price process ΠX (t) is an adapted process.
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Multiperiod Binomial Model - Recursive Valuation

Finally, we can find a formula for the price process ΠX (t) at every node.

In the one-period case, we found the portfolio weights explicitly, but the formulas
were fairly complicated. This time, we will use some tools from statistics.

First, we have the following result, which is the analogue of the risk-neutral
valuation formula for the one-period model.

Proposition

Let Q be the risk-neutral probability measure. For every self-financing portfolio
strategy θ and any time t = 0, h, . . . ,T − h, we have

V θ
t = e−rhEQ

[
V θ
t+h

∣∣∣ S0, . . . ,St] .
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Multiperiod Binomial Model - Recursive Valuation

Proof.

EQ
[
V θ
t+h

∣∣∣ S0, . . . ,St] = EQ[∆t+hSt+h + bt+he
rh
∣∣S0, . . . ,St]

= EQ[∆t+hSt+h

∣∣ S0, . . . ,St]+ EQ[bt+he
rh
∣∣ S0, . . . ,St]

= ∆t+hEQ[St+h

∣∣ S0, . . . ,St]+ bt+he
rh

= ∆t+he
rhSt + bt+he

rh (definition of risk-neutral measure)

= erh(∆t+hSt + bt+h)

= erh(∆tSt + bte
rh) (self-financing)

= erhV θ
t .
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Multiperiod Binomial Model - Recursive Valuation

As a corollary, we have the following:

Proposition (Recursive Valuation)

Let Q be the risk-neutral probability measure, and suppose that X is a contingent
claim. Then at any time t = 0, h, . . . ,T − h, we have

ΠX (t) = e−rhEQ [ΠX (t + h) | S0,Sh, . . . ,St ] .

Proof.

Since the multiperiod model is complete, there is a replicating portfolio θ∗ for X . The
result follows immediately from the previous Proposition and the fact that
ΠX (t) = V θ∗

t for every time t = 0, h, . . . ,T .
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Multiperiod Binomial Model - Risk-Neutral Valuation

Using recursive valuation, we can prove the most important result in Part II:

Theorem (Risk-Neutral Valuation)

Suppose a multiperiod binomial model is arbitrage free. Then the risk-neutral price of
a contingent claim X at time t = 0, h, . . . ,T is given by

ΠX (t) = e−r(T−t)EQ[X ∣∣S0, Sh, . . . ,St] .
In particular,

ΠX (0) = e−rTEQ[X ] .
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Multiperiod Binomial Model - Risk-Neutral Valuation

Proof.

We use induction, backward in time.

Base case (t = T ): At time T , the price must match the payoff. Recall that X
denotes the time-T payoff of the derivative, which is of the form Φ(S0, Sh, . . . ,ST ).
Hence, given the stock prices up until time T , we know that the value of X is.
Therefore we have

ΠX (T ) = X = EQ[X |S0, . . . ,ST ] .
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Multiperiod Binomial Model - Risk-Neutral Valuation

Proof (cont’d).

Inductive step: Now suppose the result holds for time t + h. Then we want to show
that the result holds for time t. By recursive valuation, we have:

ΠX (t) = e−rhEQ[ΠX (t + h)
∣∣ S0,Sh, . . . ,St]

= e−rhEQ[e−r(T−(t+h))EQ[X ∣∣ S0,Sh, . . . ,St+h

] ∣∣ S0,Sh, . . . ,St]
= e−r(T−t)EQ[EQ[X ∣∣S0, Sh, . . . ,St+h

] ∣∣ S0,Sh, . . . ,St]
= e−r(T−t)EQ[X ∣∣S0, Sh, . . . ,St] ,

where we apply the tower rule in the last line. This concludes the proof.
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Option Pricing in the Binomial Model:

European Options
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Binomial Model - Option Pricing

We saw two important results:

Recursive Valuation

Let Q be the risk-neutral probability measure, and suppose that X is a contingent
claim. Then at any time t = 0, h, . . . ,T − h, we have

ΠX (t) = e−rhEQ [ΠX (t + h) | S0,Sh, . . . ,St ] .

Risk-Neutral Valuation

The risk-neutral price of a contingent claim X at time t = 0, h, . . . ,T is given by

ΠX (t) = e−r(T−t)EQ[X ∣∣S0, Sh, . . . ,St] .
We will now see how to use these formulas to price options in the binomial model.
We start with a European put.
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Binomial Model - Recursive Valuation

Example (European Put Option)

Suppose we are given the following information on a European put option:

The strike is K = 160.

The time to expiry is T = 6 months.

The spot price is S0 = 150.

We use a two-period model. The stock can either increase by 30% or decrease by
30% after one period.

The risk free rate is r = 6%.

The stock does not pay dividends.

What should the price of the option be?
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Binomial Model - Recursive Valuation

Example (European Put Option)

Note that the physical probabilities pu, pd are not given. They are not needed to
price!

We have two periods of length h = T/2 = 3 months.

From the information, we conclude that u = 1.3 and d = 0.7.

Then using the formula for risk-neutral probabilities, we have

qu =
erh − d

u − d
=

e0.06×3/12 − 0.7

1.3− 0.7
= 0.5252 ,

and

qd =
u − erh

u − d
= 1− qu = 0.4748 .

Michael Boyuan Zhu Part II - Discrete-Time Models 55/134



Binomial Model - Recursive Valuation

Example (European Put Option)

The two-period tree showing the evolution of the stock price is the following:

S0 = 150

dS0 = 105

d2S0 = 73.5

udS0 = 136.5

uS0 = 195

udS0 = 136.5

u2S0 = 253.5
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Binomial Model - Recursive Valuation

Example (European Put Option)

We now wish to find the price of the option. We first do this by using the recursive
formula to fill out the values of the following tree:

ΠX (0, 0)

ΠX (1/4, 0)

ΠX (1/2, 0)

ΠX (1/2, 1)

ΠX (1/4, 1)

ΠX (1/2, 1)

ΠX (1/2, 2)

Remember that ΠX (t) depends on the stock prices up until time t, so the values are
different at every node. Here, the notation ΠX (t, j) means the option price at time t,
given j up-movements of the stock.
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Binomial Model - Recursive Valuation

Example (European Put Option)

The payoff of the option at maturity is Φ(ST ) = (K2 − ST )+. We can replace the
rightmost nodes with their values:

ΠX (0, 0)

ΠX (1/4, 0)

Φ(73.5) = 86.5

Φ(136.5) = 23.5

ΠX (1/4, 1)

Φ(136.5) = 23.5

Φ(253.5) = 0
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Binomial Model - Recursive Valuation

Example (European Put Option)

Let’s first examine the upper node, which corresponds to the case where S1 = uS0.

ΠX (0, 0)

ΠX (1/4, 0)

86.5

23.5

ΠX (1/4, 1)

23.5

0
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Binomial Model - Recursive Valuation

Example (European Put Option)

In this case, the recursive valuation formula gives

ΠX (1/4, 1) = e−rhEQ[ΠX (1/2)
∣∣S1 = uS0

]
.

ΠX (1/4, 1)

0

23.5

qu = 0.5252

qd = 0.4748

Therefore,

ΠX (1/4, 1) = e−0.06×3/12(0.5252× 0 + 0.4748× 23.5) = 10.9919 .
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Binomial Model - Recursive Valuation

Example (European Put Option)

Now we do the same thing to the bottom node, which corresponds to the case where
S1 = dS0.

ΠX (0, 0)

ΠX (1/4, 0)

86.5

23.5

10.9919

23.5

0
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Binomial Model - Recursive Valuation

Example (European Put Option)

In this case, the recursive valuation formula gives

ΠX (1/4, 0) = e−rhEQ[ΠX (1/2)
∣∣S1 = dS0

]
.

ΠX (1/4, 0)

23.5

86.5

qu = 0.5252

qd = 0.4748

Therefore,

ΠX (1/4, 0) = e−0.06×3/12(0.5252× 23.5 + 0.4748× 86.5) = 52.6179 .
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Binomial Model - Recursive Valuation

Example (European Put Option)

Finally we can find the price at time 0 using the values we already obtained.

ΠX (0, 0)

52.6179

86.5

23.5

10.9919

23.5

0
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Binomial Model - Recursive Valuation

Example (European Put Option)

The recursive valuation formula gives

ΠX (0, 0) = e−rhEQ[ΠX (1/4)
∣∣ S0] = e−rhEQ[ΠX (1/4)

]
.

ΠX (0, 0)

10.9919

52.6179

qu = 0.5252

qd = 0.4748

Therefore,

ΠX (0, 0) = e−0.06×3/12(0.5252× 10.9919 + 0.4748× 52.6179) = 30.2985 .
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Binomial Model - Recursive Valuation

Example (European Put Option)

We conclude that the price of the option is $30.30. The price at every node is now
known.

30.2985

52.6179

86.5

23.5

10.9919

23.5

0
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Binomial Model - Risk-Neutral Valuation

Example (European Put Option)

We can also use the risk-neutral valuation formula as a shortcut. Note that the
option price at time zero is

ΠX (0) = e−rTEQ[(K − S2)+] .

S2 can take 3 values, based on the number of up-movements j :

S2 = S0u
jd2−j , j = 0, 1, 2 .

Looking at the tree, there are
(2
j

)
ways for S2 = S0u

jd2−j . Therefore, we have

Q
[
S2 = S0u

jd2−j
]

=

(
2

j

)
qjuq

2−j
d .

Note that these probabilities come from the binomial distribution.
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Binomial Model - Risk-Neutral Valuation

Example (European Put Option)

Hence, we have

ΠX (0) = e−rTEQ[(K − S2)+
]

= e−rT
2∑

j=0

(
2

j

)
qjuq

2−j
d (K − S0u

jd2−j)+

= e−0.06×6/12
[
q2u(K − S0u

2)+ + 2quqd(K − S0ud)+ + q2d(K − S0d
2)+
]

= e−0.03
[
(0.5252)2(160− 253.5)+ + 2(0.5252)(0.4748)(160− 136.5)+

+ (0.4748)2(160− 73.5)+
]

= 30.2985 .
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Binomial Model - Risk-Neutral Valuation

In general, if the model has k periods, then ST can take k + 1 different values
based on the number of up-movements j :

ST = S0u
jdk−j , j = 0, 1, 2, . . . , k .

There are
(k
j

)
different ways we can have j up-movements. The probability of

each of these ways, under Q, is qjuq
k−j
d .

Therefore,

Q
[
ST = S0u

jdk−j
]

=

(
k

j

)
qjuq

k−j
d .
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Binomial Model - Risk-Neutral Valuation

Therefore, for a contingent claim with a payoff of the form X = Φ(ST ), we have
the following formula:

ΠX (0) = e−rTEQ[Φ(ST )
]

= e−rT
k∑

j=0

(
k

j

)
qjuq

2−j
d Φ(S0u

jd2−j) .

An advantage of this formula is that it is very easy to implement in code. There
are only O(k) terms to calculate, whereas the recursive formula would require
O(k2) terms.
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Option Pricing in the Binomial Model:

American Options
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Binomial Model - American Options

We can also use a binomial tree to price American options. Recall that the option
can be exercised at any point before expiration, which makes writing explicit
payoff functions difficult.

However, with a stock model in place, we are actually able to determine how to
optimally exercise American options!

We will assume that exercise is only possible at the end of each time period.

In this section, we will be a little less rigorous. For those who are interested, this
is called an optimal stopping problem, and is solved using dynamic programming.
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Binomial Model - American Options

Denote by (t, j) the node at time t with j up-movements. At any node, we can
either exercise or hold the option. How do we decide what to do?

We decide by comparing two values: the exercise value and the continuation
value.

The exercise value is the value of the option if it is exercised:

E (t, j) = Φ(S(t, j)) = Φ(S0u
jd t/h−j) .

The continuation value is the value of the option if we were to hold, and is given
recursively:

H(t, j) = e−rh
[
quΠ(t + h, j + 1) + qdΠ(t + h, j)

]
.

We exercise the option when the exercise value is greater:

Π(t, j) = max{E (t, j),H(t, j)} .

Michael Boyuan Zhu Part II - Discrete-Time Models 72/134



Binomial Model - American Options

We can calculate the values of Π recursively since we know the value of the option
at maturity:

Π(T , j) = Φ(S(T , j)) = Φ(S0u
jdk−j) .

By repeating this process, we can find the current price of the American option
Π(0, 0).

Note that we have to use recursion here, and there is no shorter formula. This is
because we need to check the possibility of exercise at every node.

Essentially, we recursively calculate option prices at every node, but if the exercise
value is greater, we replace the option price with its exercise value. In the
following, we re-examine our put option example.
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Binomial Model - Recursive Valuation of American Options

Example (American Put Option)

Suppose we are given the following information on an American put option:

The strike is K = 160.

The time to expiry is T = 6 months.

The spot price is S0 = 150.

We use a two-period model. The stock can either increase by 30% or decrease by
30% after one period.

The risk free rate is r = 6%.

The stock does not pay dividends.

What should the price of the option be?
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Binomial Model - Recursive Valuation of American Options

Example (American Put Option)

As before, the value of the option at maturity is the payoff:

ΠX (0, 0)

ΠX (1/4, 0)

Φ(73.5) = 86.5

Φ(136.5) = 23.5

ΠX (1/4, 1)

Φ(136.5) = 23.5

Φ(253.5) = 0
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Binomial Model - Recursive Valuation of American Options

Example (American Put Option)

Using the same formula from before, we can find the continuation values at the middle
nodes:

ΠX (0, 0)

H(1/4, 0) = 52.6179

86.5

23.5

H(1/4, 1) = 10.9919

23.5

0

These are not the values of ΠX , since we need to consider exercise values.
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Binomial Model - Recursive Valuation of American Options

Example (American Put Option)

Comparing the continuation values to the exercise values, we have:

At node (1/4, 1):

E (1/4, 1) = Φ(S0u) = (160− 195)+ = 0 ,

Π(1/4, 1) = max{E (1/4, 1),H(1/4, 1)} = max{0, 10.9919} = 10.9919 .

At node (1/4, 0):

E (1/4, 0) = Φ(S0d) = (160− 105)+ = 55 ,

Π(1/4, 0) = max{E (1/4, 0),H(1/4, 0)} = max{55, 52.6179} = 55 .

This implies that the option will be exercised if the stock goes down in the first period!
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Binomial Model - Recursive Valuation of American Options

Example (American Put Option)

Hence, we have the following:

ΠX (0, 0)

55

86.5

23.5

10.9919

23.5

0

{
E = 0

H = 10.9919

{
E = 55

H = 52.6179
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Binomial Model - Recursive Valuation of American Options

Example (American Put Option)

Repeating this process for node (0, 0), we have:

H(0, 0) = e−rh(quΠ(1/4, 1) + qdΠ(1/4, 0))

= e−rh(qu × 10.9919 + qd × 55) = 31.4127 ,

E (0, 0) = Φ(S0) = (160− 150)+ = 10 ,

Π(0, 0) = max{E (0, 0),H(0, 0)} = max{10, 31.4127} = 31.4127 .

Hence, the price of this American put option is $31.41. Note that this price is greater

than that of the corresponding European put $30.30.
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Binomial Model - Recursive Valuation of American Options

Example (American Put Option)

Hence, we have the following:

31.4127

55

86.5

23.5

10.9919

23.5

0{
E = 10

H = 31.4127
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Binomial Model - Recursive Valuation of American Options

Example (American Put Option)

Since we always exercise after a down movement in period 1, the actual value of the
option is:

31.4127

55

10.9919

23.5

0
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Option Pricing in the Binomial Model:

Dividends
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Binomial Model - Dividends

So far we have only considered situations where the stock does not pay dividends.

We can also use binomial trees to price options on dividend-paying stock.
However, it is important to remember the following:

The holder of an option is not entitled to dividends. Only shareholders receive
dividends.

The payment of dividends affects the price of the stock. The underlying stock price
drops by the amount of the dividend when a dividend is paid.

The price of a stock right before a dividend payment is called the cum-dividend
price.

The price of a stock right after a dividend payment is called the ex-dividend price.

The difference between the two is the amount of dividend paid.
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Binomial Model - Dividends
Here is a chart for CASH.TO, a money market ETF:1

1
Market data as of EOD Sept. 22, 2023. CASH.TO is the Horizons High Interest Savings ETF, which currently yields 5.39%.
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Binomial Model - Continuous Dividends

For a continuous dividend rate of δ, we have a convenient shortcut. We can do
exactly the same thing as the no-dividend case, but using

qu =
e(r−δ)h − d

u − d
, qd =

u − e(r−δ)h

u − d
.

In this case, it is possible to verify that the Principle of No Arbitrage holds if and
only if

d < e(r−δ)h < u .

Redoing everything will eventually lead us to the formula...
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Binomial Model - Continuous Dividends

Example (European Put Option, Continuous Dividends)

Suppose we are given the following information on a European put option:

The strike is K = 160.

The time to expiry is T = 6 months.

The spot price is S0 = 150.

We use a two-period model. The stock can either increase by 30% or decrease by
30% after one period.

The risk free rate is r = 6%.

The stock pays a continuous dividend at a rate of δ = 4%.

What should the price of the option be?
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Binomial Model - Continuous Dividends

Example (European Put Option, Continuous Dividends)

In this case, using the new formula for risk-neutral probabilities, we have

qu =
e(r−δ)h − d

u − d
=

e(0.06−0.04)×3/12 − 0.7

1.3− 0.7
= 0.5084 ,

and

qd =
u − erh

u − d
= 1− qu = 0.4916 .
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Binomial Model - Continuous Dividends

Example (European Put Option, Continuous Dividends)

The two-period tree showing the evolution of the stock price is the same as before:

S0 = 150

dS0 = 105

d2S0 = 73.5

udS0 = 136.5

uS0 = 195

udS0 = 136.5

u2S0 = 253.5

Michael Boyuan Zhu Part II - Discrete-Time Models 88/134



Binomial Model - Continuous Dividends

Example (European Put Option, Continuous Dividends)

As an exercise, verify that the price of the option is the following:

31.69

53.6627

86.5

23.5

11.3817

23.5

0
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Binomial Model - Discrete Dividends

For discrete dividends, we have incorporate the drops in stock prices into the tree
itself.

This will become clear in the following example.
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Binomial Model - Discrete Dividends

Example (European Call Option, Discrete Dividend)

Suppose we are given the following information on an at-the-money European call
option:

The strike is K = 100 and the spot price is S0 = 100.

The time to expiry is T = 3 years.

We use a 3-period model. The stock can either increase by 25% or decrease by
20% after one period.

The risk free rate is r = 0%.

The stock pays a dividend of 10% of its cum-dividend price after 2 years.

What should the price of the option be?
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Binomial Model - Discrete Dividends

Example (European Call Option, Discrete Dividend)

The stock price is given by the following:

100

80

64

100

125

100

156.25

57.6

46.08

72

90

72

112.5

140.63

112.5

175.78
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Binomial Model - Discrete Dividends

Example (European Call Option, Discrete Dividend)

As an exercise, verify that qu = 4/9, and that the price of the option is the following:

10.77

2.47

0

0

0

5.56

0

12.5021.14

5.56

0

12.50

40.62

12.50

75.78
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Binomial Model - Discrete Dividends

So far, all our trees have “recombined”.

However, if the discrete dividend is not proportional to the stock price, then our
tree will not recombine. We will see more examples of non-recombining trees in
the following section.

Nonetheless, option pricing is still possible using the same methods as before.

⇒ Suppose in the previous example, instead of having a discrete dividend of 10% of
the stock price, the dividend was instead a fixed $10.
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Binomial Model - Discrete Dividends

Example (European Call Option, Discrete Dividend)

The stock price would be given by the following:

100

80

64

100

125

100

156.25

54

43.2

67.5

90

72

112.5

146.25

117

182.8125
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Binomial Model - Discrete Dividends

Example (European Call Option, Discrete Dividend)

As an exercise, verify that qu = 4/9, and that the price of the option is the following:

11.88

2.47

0

0

0

5.56

0

12.50
23.64

5.56

0

12.50

46.25

17

82.81
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Option Pricing in the Binomial Model:

Exotic Options
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Binomial Model - Exotic Options

There are derivatives with more complicated payoffs than those of calls and puts.

A lot of these derivatives are path-dependent, which means that the payoffs
depend on the path of the stock price over a period of time.

In other words, X = Φ(S0,Sh, . . . ,ST ). This does not always simplify to
X = Φ(ST ), as it does in the case of calls and puts with continuous dividends.

We saw that we need to consider different paths when considering discrete dividends.
It is important to recognize when all paths need to be considered.

Path-dependent options include Asian options, barrier options, lookback options,
etc.

Exotic options are created for complex risk/portfolio management purposes, and
are generally traded over-the-counter.
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Binomial Model - Asian Options

Definition (Asian Options)

An Asian option has a payoff that depends on the average of the stock price over the
time period. For example, with k = 3 and h = 1 year:

An Asian call option with strike K has payoff

max

{
S1 + S2 + S3

3
− K , 0

}
.

An Asian put option with strike K has payoff

max

{
K − S1 + S2 + S3

3
, 0

}
.

⇒ The Asian option can still be priced using recursive evaluation. However, since it
is path-dependent, all 2k paths of the tree must be drawn.

Michael Boyuan Zhu Part II - Discrete-Time Models 99/134



Binomial Model - Asian Option

Example (Asian Option)

Suppose we are given the following information on a binomial model with k = 3 time
periods:

The spot price is $200.

The time to expiry is T = 3 years.

We have u = 1.2 and d = 0.9.

The risk-free rate is r = 5%.

Determine the price of an Asian put option with strike K = $200. Its payoff is

max

{
200− S1 + S2 + S3

3
, 0

}
.
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Binomial Model - Asian Option

Example (Asian Option)

For path-dependent options, draw all possible paths of the stock price:

200

180

162
145.8

194.4

216
194.4

259.2

240

216
194.4

259.2

288
259.2

345.6
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Binomial Model - Asian Option

Example (Asian Option)

As an exercise, verify that qu = 0.5042, and that the price of the option is the
following:

6.53

13.8366

27.8057
37.4

21.2

1.5091
3.2

0

0

0
0

0

0
0

0
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Binomial Model - Barrier Option

Definition (Barrier Options)

An barrier option has a payoff that depends on whether or not the stock price reaches
a given level over the time period.

A knock-out option pays a fixed rebate or becomes worthless if the stock price
hits a given barrier before expiration. Otherwise, its payoff is the same as that of
a standard option.

A knock-in option pays a fixed rebate or becomes worthless if the stock price does
not hits a given barrier before expiration. Otherwise, its payoff is the same as that
of a standard option.

⇒ For example, a knock-out call option with no rebate pays 0 if the barrier is
reached, and max{ST − K , 0} otherwise.
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Binomial Model - Barrier Option

Example (Barrier Option)

Suppose we are given the following information on a binomial model with k = 3 time
periods:

The spot price is $200.

The time to expiry is T = 3 years.

We have u = 1.2 and d = 0.9.

The risk-free rate is r = 5%.

Determine the price of a no-rebate knock-out call option with strike K = $200 and
barrier $190.
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Binomial Model - Barrier Option

Example (Barrier Option)

As an exercise, verify that the price of the option is the following:

28.91

0

0
0

0

0
0

0

60.2779

28.3950
0

59.2

97.7541
59.2

145.6
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Binomial Model - Lookback Option

Definition (Lookback Options)

A lookback option has a payoff that depends on the maximum or minimum price of the
stock during the life of an option.

A lookback call (floating strike) pays max{ST − Smin, 0} at expiration time T .

A lookback put (floating strike) pays max{Smax − ST , 0} at expiration time T .

A lookback call (fixed strike) pays max{Smax − K , 0} at expiration time T .

A lookback put (fixed strike) pays max{K − Smin, 0} at expiration time T .

⇒ Here, Smin and Smax denote the minimum and maximum prices the stock achieved
before expiration.
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Binomial Model - Lookback Option

Example (Lookback Option)

Suppose we are given the following information on a binomial model with k = 3 time
periods:

The spot price is $200.

The time to expiry is T = 3 years.

We have u = 1.2 and d = 0.9.

The risk-free rate is r = 5%.

Determine the price of a floating-strike lookback put option.
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Binomial Model - Lookback Option

Example (Lookback Option)

As an exercise, verify that the price of the option is the following:

16.57

18.2061

28.2459
54.2

5.6

10.1862
21.6

0

16.6554

21.5042
45.6

0

13.5816
28.8

0
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General Discrete-Time Models
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General Model - Introduction

So far, we have examined the binomial model. Recall that for the one-period
binomial model:

There were only two states: “up” and “down”.

There were only two assets: the stock and the risk-free bond.

We now seek to generalize beyond these assumptions. We start by examining a
single period market model (time 0 to h) such that:

There can be more than two states of the market.

There can be more than one risky asset.

As before, we will try to price securities by replicating payoffs and applying the
no-arbitrage principle.

Also as before, risk-neutral valuation will be possible under certain conditions.
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General Model - Introduction

Under a more formal probability framework, a probability space is defined in terms
of a state space

Ω = {ω1, ω2, . . . , ωM} ,

with each ωj representing a possible future state of the market, for j = 1, . . . ,M.

We assume there is a probability measure P on the set Ω. That is P(ωj) is the
probability that the future state ωj will occur. We assume that P(ωj) > 0.

A random variable is a (measurable) function from Ω to R.

It is straightforward to verify that in the one-period binomial model, we have
M = 2 states, and that Sh is a random variable.
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Single-Period Market Model - Setup

Now, let us consider N securities with random future prices. We will use the

notation S
(i)
t to represent the price of the i-th security at time t.

As before, S
(i)
0 denotes the current price of security i , which is known. The price

of security at the end of one period is S
(i)
h , which is a random variable.

We can write all possible values of S
(i)
h in the form of a vector. For each

i = 1, . . . ,N, define

S
(i)
h :=


S
(i)
h (ω1)

S
(i)
h (ω2)

...

S
(i)
h (ωM)

 .
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Single-Period Market Model - Setup

Since there are N total securities, we can also define the time-t prices of all
securities as a vector:

St :=
[
S
(1)
t S

(2)
t . . . S

(N)
t

]
.

Combining this with the vector representation of S
(i)
h on the previous slide, all

possible prices after one period are represented by the following M × N matrix:

Sh(Ω) :=


S
(1)
h (ω1) S

(2)
h (ω1) . . . S

(N)
h (ω1)

S
(1)
h (ω2) S

(2)
h (ω2) . . . S

(N)
h (ω2)

...
...

. . .
...

S
(1)
h (ωM) S

(2)
h (ωM) . . . S

(N)
h (ωM)

 .
Here, each row represents a different future state of the world. Each column
represents a different security.
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Single-Period Market Model - Setup

It will often be useful for the first security S (1) to represent a risk-free asset. If so,
then:

S
(1)
0 = 1, and,

S
(1)
h (ω) = erh for each ω ∈ Ω.

For the one-period binomial model,

S0 :=
[
1 S

(2)
0

]
Sh(Ω) :=

[
erh S

(2)
0 u

erh S
(2)
0 d

]
.
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Single-Period Market Model - Setup

Similar to before, investors can form portfolios of the N securities in fixed
proportions.

Definition (Portfolio, Single-Period General Model)

A portfolio is a column vector of real numbers θ =
[
θ1 θ2 . . . θN

]T ∈ RN , which
represents a position of θi units of asset i .

Let {V θ
t }t≥0 denote the value process of a portfolio. Then a portfolio θ has value

process

V θ
t =

n∑
i=1

θiS
(i)
t = St · θ .
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Single-Period Market Model - Example

Example

Suppose M = N = 3, S0 =
[
1 20 50

]
, and

Sh(Ω) =

1.1 25 100
1.1 15 20
1.1 30 30

 .
Let θ =

[
200 −10 3

]T
. Calculate V θ

0 and Sh(ωj) · θ for each j = 1, 2, 3, and give an
interpretation for each of these values. Here, Sh(ωj) refers to the j-th row of Sh(Ω).
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Single-Period Market Model - Arbitrage

We are now ready to define an arbitrage opportunity in this context.

Definition (Arbitrage Opportunity)

An arbitrage opportunity is a portfolio such that:

(i) S0 · θ ≤ 0, and,

(ii) Sh(Ω) · θ > 0.

Here, Sh(Ω) · θ > 0 means that all its components are ≥ 0, and at least one
component is > 0.

It can be verified that this is exactly the same definition as in the one-period
binomial model. That is, there is arbitrage if we can make a strictly positive profit
with positive probability.
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Single-Period Market Model - Arbitrage

As always...

Definition (Principle of No Arbitrage)

There are no arbitrage opportunities in this market.

For the one-period binomial model, we proceeded to prove that the Principle of
No Arbitrage holds if and only if there exists a risk-neutral measure (FTAP 1).

However, in this general market model, there might not be a risk-free asset!
Therefore we cannot prove the same result for this model. In the following, we
will try to prove a similar result that will hopefully also be useful for pricing.
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Single-Period Market Model - State-price Vector

Definition (State-price Vector)

A state-price vector Ψ is a strictly positive row vector

Ψ =
[
Ψ1 Ψ2 . . . ΨM

]
such that S0 = Ψ · Sh(Ω). Equivalently, for all i = 1, . . . ,N, we have

S
(i)
0 =

M∑
j=1

ΨjS
(i)
h (ωj) .

If we want to find a state-price vector, then we would need to solve a system of N
equations and M unknowns.

If N > M, then there may not exist a state-price vector.

If M > N, then there might be more than one state-price vector. We see that
state-price vectors is related to the rank of the matrix Sh(Ω).
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Single-Period Market Model - Example

Example

Consider a single-period market model with S0 =
[
1 1

]
, and

Sh(Ω) =

2 0
2 4
2 3

 .
Show that the collection of all state-price vectors is given by

Ψ =
[
1
4 −

1
4x ,

1
4 −

3
4x , x

]
where x ∈ (0, 1/3).
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Single-Period Market Model - FTAP

Theorem (First Fundamental Theorem of Asset Pricing (FTAP 1))

In the single-period market model, The Principle of No Arbitrage holds if and only if
there exists a state-price vector.

Proof.

We will only show that if there exists a state-price vector, then there is no arbitrage.
Let θ be a portfolio, and suppose that Sh(Ω) · θ > 0. Then since Ψ is strictly positive,
we have

S0 · θ = Ψ · Sh(Ω) · θ > 0 .

Hence, arbitrage is not possible. The other direction of the proof requires the
Hyperplane Separation Theorem and is beyond the scope of this course.
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Single-Period Market Model - Example

Example (Binomial Model)

Consider a single-period market model with S0 =
[
1 1

]
, and

Sh(Ω) =

[
erh u
erh d

]
.

Show that the only possible state-price vector is

Ψ =
[
e−rhqu e−rhqd

]
,

and conclude that there exists a state-price vector if and only if d < erh < u.
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Single-Period Market Model - Contingent Claims

This time, a contingent claim with expiry date h is a random variable. We will use
the letter X to denote the payoff of contingent claims, as before.

Note that before, our contingent claims were functions of terminal stock price:
X = Φ(Sh). Since Sh is a random variable, so is X , so these two definitions do not
contradict one another.

For each ωj , the value X (ωj) represents the payoff of X in state j . We can write X
as a vector:

X =


X (ω1)
X (ω2)

...
X (ωM)


Our goal is to find a fair time-0 price for X .
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Single-Period Market Model - Valuation

The following result indicates what an arbitrage-free price should be.

Proposition

Suppose we have an arbitrage-free single-period market model, defined by S0 and
Sh(Ω). Let X be a contingent claim. Then X0 is an arbitrage-free price in this market
if and only if

X0 = Ψ · X ,

where Ψ is a state-price vector.

Note that in this case, the arbitrage-free price may not be unique!

Recall that if the binomial model is arbitrage-free, then it is complete. This is not
true in general, so we need to consider these two concepts separately.
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Single-Period Market Model - Valuation

Proof.

Consider the market with N + 1 assets that includes the contingent claim X . Then by
FTAP, this market is arbitrage-free if and only if there exists a state-price vector. That
is, there exists Ψ such that for each i = 1, . . . ,N + 1,

S
(i)
0 =

M∑
j=1

ΨjS
(i)
h (ωj) .

Note that the first N equations are exactly the conditions for Ψ to be a state-price
vector in the original market. The (N + 1)-st equation is exactly

X0 = Ψ · X ,

which concludes the proof.
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Single-Period Market Model - Example

Example

Consider a single-period market model with S0 =
[
1 1

]
, and

Sh(Ω) =

2 0
2 4
2 3

 .
Let X be a call option on S (2) with strike 2 and expiration h. Show that the possible
arbitrage-free prices are given by the interval (1/3, 1/2).

Next, assume that the price of this call option is 2/5. Find all state-price vectors in the
market (with this call option included).
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Single-Period Market Model - Completeness

Definition (Attainability)

A contingent claim X is attainable if there exists a portfolio θ such that

V θ
h = Sh · θ = X .

In this case, θ is a replicating portfolio for X .

Definition (Completeness)

A market is complete if it is arbitrage-free and all contingent claims are attainable.

A convenient characterization of completeness in this market is given on the
following slide.
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Single-Period Market Model - Completeness

Lemma

An arbitrage-free single-period market model is complete if and only if the M × N
matrix Sh(Ω) has rank M.

Proof.

Let X be a contingent claim. Then θ is a replicating portfolio if it satisfies the equation

Sh(Ω) · θ = X .

This equation has a solution for arbitrary X if and only if the image of Sh(Ω) is RM .
That is, Sh(Ω) has rank M.

As a corollary, we see that the binomial model is complete, since its matrix (as
given in an earlier example) has rank 2.
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Single-Period Market Model - Completeness

Theorem (Second Fundamental Theorem of Asset Pricing (FTAP 2))

An arbitrage-free single-period market model is complete if and only if the state-price
vector is unique.

Proof.

Recall that Ψ is a state-price vector if and only if it solves the equation

S0 = Ψ · Sh(Ω) .

Taking transposes, this is equivalent to

ST
0 = Sh(Ω)T ·ΨT .

Then this equation has a unique solution if and only if the kernel of Sh(Ω)T is {0}.
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Single-Period Market Model - Completeness

Proof (Cont’d).

By the rank-nullity theorem, we have

ker(Sh(Ω)T ) = {0} ⇐⇒ Nullity(Sh(Ω)T ) = 0

⇐⇒ Rank(Sh(Ω)T ) = M

⇐⇒ Rank(Sh(Ω)) = M

⇐⇒ The model is complete .

Michael Boyuan Zhu Part II - Discrete-Time Models 130/134



Single-Period Market Model - Risk-Neutral Measure

It seems that the state-price vector is connected to the idea of a risk-neutral
measure. Indeed, suppose that S (1) earns continuous interest at a rate r . That is,

S
(1)
0 = 1 and S

(1)
h (ωj) = erh for all j = 1, . . . ,M.

Let Ψ be a state-price vector.

Define Q(ωj) = erhΨ(ωj). Then we can verify that Q is indeed a measure on Ω:

1 = S
(1)
0 = Ψ · S (1)

h =
M∑
j=1

Ψ(ωj)e
rh =

M∑
j=1

Q(ωj)e
−rherh =

M∑
j=1

Q(ωj) .

This Q is a risk-neutral measure. Note that if X is a contingent claim, then its
time-0 price satisfies

X0 = Ψ · X = e−rhEQ[X ] .
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Single-Period Market Model - Numeraire

In general, the risk-neutral measure is what we are usually interested in. More
generally, if there is no risk-free asset in the market, we can still find a
“risk-neutral measure” by designating the first asset S (1) as the numeraire.

For each i = 1, . . . ,N and each time t, let Z
(i)
t (ωj) =

S
(i)
t (ωj )

S
(1)
t (ωj )

. Then Z
(1)
0 = 1, and

we see that the whole first column of Zh(Ω) is 1.

Essentially, we are expressing everything in terms of the numeraire S (1).

All the theory still applies to the market determined by Z0 and Zh(Ω), but now a
state-price vector Ψ is actually a measure, by defining Q(ωj) = Ψ(ωj).

This Q is also known as the martingale measure. If X is expressed in terms of the
numeraire, then

X0 = EQ[Xh] .
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Single-Period Market Model - Example

Example (Binomial Model)

Consider a single-period market model with S0 =
[
1 1

]
, and

Sh(Ω) =

[
erh u
erh d

]
.

Take the first asset as the numeraire. Show that the unique martingale measure is
given by Q(ω1) = qu and Q(ω2) = qd .

Note that if we solve directly for Ψ and calculate the risk-neutral measure as
Q = erhΨ, we would get the same thing. However, using a numeraire to find a
martingale measure is what is usually done in practice.
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Multiperiod Market Model

Although beyond the scope of this course, the general market model can be
extended to multiple periods.

Similar to the multiperiod binomial model, we will need to consider self-financing
portfolio strategies, and modify the definition of arbitrage.

In the multiperiod setting, FTAP 1 and FTAP 2 will still hold.

Risk-neutral pricing will be possible as well, using a martingale measure defined
with respect to a choice of numeraire. If X is expressed in terms of the numeraire,
then the following formula still applies:

X0 = EQ [XT ] .
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