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Probability Theory - The Basics

Financial models in continuous time are modelled using tools from stochastic
calculus. This is a branch of mathematics that operates on stochastic processes.

Calculus is concerned with analysing functions. Stochastic calculus analyses
functions that can be random (stochastic processes).

It would be too time-consuming to formally develop this theory. Instead, we will
rely on some rules to calculate what we want.

The main topics we want to introduce are (filtered) probability spaces, conditional
expectation, and martingales.
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Probability Theory - Probability Spaces

We have seen from the discussion on general market models that random
variables are (measurable) functions on a state space Ω. This is in line with the
official definition of a probability space from probability theory:

Definition (Probability Space)

A probability space is a triple (Ω,F ,P), where:

Ω is a state space (i.e. a set representing future states of the world),

F is a σ-algebra on Ω, which represents the amount of information available to us,

P is a probability measure.

We will use the letter X to denote a random variable on the probability space
(Ω,F ,P). Usually, X will represent the price of a financial instrument.
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Probability Theory - Stochastic Processes

Definition (Stochastic Process)

Let (Ω,F ,P) be a probability space. Then a (continuous) stochastic process is a
collection

{Xt : t ∈ [0,+∞)}

of random variables on (Ω,F ,P). We will also use the notation {Xt}t≥0 to denote a
stochastic process.

For a specific state ω ∈ Ω, the realization of the stochastic process is

{Xt(ω)}t≥0 .

This is a function from [0,∞) to R, defined by t 7→ Xt(ω). This is called the
sample path of the process at ω.
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Probability Theory - Stochastic Processes
In other words, each different state of the world ω ∈ Ω produces a different path
of the price of the instrument X . A sample path of a stochastic process is given
below:
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Probability Theory - Stochastic Processes

Some more sample paths (representing different states of the world ω) are shown
below:
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Probability Theory - Stochastic Processes

We will assume the following on stochastic processes:

Each sample path is continuous. That is, there are no jumps in sample paths.

Xt is a continuous random variable for all t.

In particular, this means that the state space Ω is a continuum. This is different
from the models we saw in Part II, where Ω had finitely many states.
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Probability Theory - Information and Filtration

We have mentioned before that the σ-algebra component of a probability space
represents information.

Suppose {Xt}t≥0 represents the price of some instrument.

As time passes, we can observe the value of Xt and accumulate more
“information”. At each time t, define the information set Ft to represent the
information available at time t.

Definition (Filtration)

A filtration is a series of information sets {Ft}t≥0 such that if s ≤ t, then

Fs ⊆ Ft .

This condition essentially says that the amount of information available to us
becomes larger as time goes on.

Michael Boyuan Zhu Part III - Basic Stochastic Calculus 9/66



Probability Theory - Information and Filtration (extra)

Some more precise definitions are given in the following for those familiar with
measure theory. This material is optional.

Definition (σ-algebra)

A σ-algebra or σ-field F is a collection of subsets of Ω satisfying:

∅ ∈ F .

F is closed under complements.

F is closed under countable unions.

Elements of F are called events.

Information sets are σ-algebras. Specifically, Ft represents all the events that we
know have happened or not, at time t.

A filtration is an increasing collection of σ-algebras.
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Probability Theory - Information and Filtration

We say a random variable X is measurable with respect to F if information
contained in F can tell us what the realized value of X is.

We will generally consider filtrations {Ft}t≥0 that contain the information of the
evolution of a price Xt . Then at time t, we would know what the value of Xt is.
Therefore, we would expect Xt to be measurable with respect to Ft .

Definition (Adapted Process)

The process {Xt}t≥0 is adapted to the filtration {Ft}t≥0 if Xt is measurable with
respect to Ft .
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Probability Theory - Information and Filtration (extra)

Some more official definitions are as follows:

Definition (Measurability)

A function X : Ω→ R is measurable with respect to a σ-algebra F if for all intervals
I ∈ R, we have

X−1(I ) ∈ F ,

where X−1(I ) denotes the pre-image of the set I under X . We say that X is a random
variable (on a probability space (Ω,F ,P)) if it is measurable (with respect to F).

This means that given the information set F , we know whether or not the realized
value of X is in the interval I .

This implies that we would know what the value of X is.
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Probability Theory - Information and Filtration (extra)

We will work with filtered probability spaces in this course.

Definition (Filtered Probability Space)

[Probability Space] A filtered probability space is a quadruple (Ω, {Ft}t≥0,F ,P), where
(Ω,F ,P) is a probability space and {Ft}t≥0 is a filtration. We will also assume that

F = FT ,

for some terminal time T .

Suppose that X is a random variable on (Ω,F ,P). That means that it is
F-measurable. This suggests that the value of X must be known at time T .
Recall that this is true for all contingent claims we saw so far in the course.
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Conditional Expectation and Martingales
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Conditional Expectation

Recall that the expectation of a random variable X given another random variable
Y is E[X |Y ], which is itself a random variable. We will now introduce the
corresponding notion for information sets.

Definition (Conditional Expectation)

Let X be a random variable on (Ω,F ,P) and let G ⊆ F be an information set. Then
the conditional expectation of X given the information set G is denoted by

E[X |G] ,

which is itself a random variable.

In essence, E[X |G] is our best guess of the value of X given the information that
we have (G). Generally, we will consider conditional expectations of the form
E[X |Ft ].
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Conditional Expectation (extra)

The official definition of condition expectation is fairly complicated to prove and
interpret. In any case, it is given by the following:

Theorem (Kolmogorov)

Suppose X ∈ L1(Ω,F ,P) and G ⊆ F . Then there exists a unique, G-measurable
random variable Z ∈ L1(Ω,G,P) such that for all events A ∈ G,∫

A
Z dP =

∫
A
X dP .

We define E[X |G] = Z .
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Conditional Expectation

The conditional expectation E[X |G] exhibits the following:

E[X |G] is G-measurable. If we know the information G, then we should know
what the value of our best guess is. Alternatively, we do not need to know
anything more than G in order to give our best guess given G.

The expectation E[X ] can be interpreted as a conditional expectation with no
information given. Formally, E[X ] = E[X |{∅,Ω}].

The conditional expectation is linear. That is, E[aX + Y |G] = aE[X |G] + E[Y |G].
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Conditional Expectation

The conditional expectation E[X |G] exhibits the following:

The tower rule holds: if H ⊆ G, then E[E[X |G]|H] = E[X |H]. This also implies
that E[E[X |G]] = E[X ].

If Y is G-measurable, then E[XY |G] = YE[X |G]. If we know G, then we know the
value of Y , so we can take it out of the expectation as if it were a constant.

If X is independent of G, then E[X |G] = E[X ]. This means that G does not give
us any information about X at all.
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Martingales

Definition (Martingale)

An adapted process {Xt}t≥0 on a filtered probability space (Ω, {Ft}t≥0,F ,P) is a
martingale if

1 E[|Xt |] <∞ for all t (this is a technical condition),

2 E[Xt |Fs ] = Xs , for all s, t ≥ 0 such that s < t.

Essentially, a process is a martingale if the best guess of its future value is its
current value.

This also means that the directions of future movements are impossible to
forecast. Therefore trajectory must not exhibit any discernible trends or
periodicities.
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Martingales

Example

We can show that if {Xt}t≥0 is a martingale, then for s < t,

E[Xt − Xs |Fs ] = 0 .

This means that the expected change over the interval [s, t], even when given all the
information at s, is zero. Hence, a martingale can be understood as the mathematical
formalization of a fair game.

E[Xt − Xs |Fs ] = E[Xt |Fs ]− E[Xs |Fs ]

= Xs − Xs

= 0 .
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Martingales
The stochastic process we saw earlier is a martingale. Does it look like there are
any discernible trends?
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Brownian Motion

Michael Boyuan Zhu Part III - Basic Stochastic Calculus 22/66



Brownian Motion
The sample paths we saw before are realizations of a very special stochastic
process: the one-dimensional Brownian motion.

Brownian motion is the basis of the most commonly used models of asset prices.

We will see later that stocks are modeled, roughly speaking, as a function of
Brownian motion:
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Brownian Motion

Definition (Brownian motion)

A stochastic process {Wt}t≥0 is a (standard, one-dimensional) Brownian motion if it
has the following properties.

W0 = 0.

Each sample path t 7→Wt(ω) is continuous.

For each s < t, we have Wt −Ws ∼ N (0, t − s).

It has independent increments. That is, for 0 = t0 < t1 < · · · < tm,

Wt1 −Wt0 ,Wt2 −Wt1 , . . . ,Wtm −Wtm−1

are independent.
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Brownian Motion - A Brief History
1827 BM originates in the work of Scottish botanist Robert Brown, who studies the irregular

movement of pollen in water.

1900 Louis Bachelier introduces it to finance. For this reason, Bachelier is considered by many as the
founder of modern mathematical finance.

1905 Albert Einstein introduces Brownian motion to physics, which eventually leads to conclusive
proof of atomic theory.

1923 Norbert Wiener gives the first mathematically rigorous proof of the existence of BM. This is
why Brownian motion is sometimes called Wiener process and denoted by W .

1934 Paul Lévy extends the notion of BM to more general processes.

1940 French army soldier Vincent Doeblin develops stochastic calculus: new calculus for stochastic
processes.

1942 Independently, Kiyoshi Itô develops stochastic calculus.

1955 Paul Samuelson introduces the geometric Brownian motion (GBM) as the underlying model for
stock prices.

1973 Fisher Black, Myron Scholes and Robert Merton use the GBM for stock prices and come up
with the famous option pricing formulas.
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Brownian Motion

Proving that Brownian motion actually exists is a difficult task, and beyond the
scope of this course.

Additionally, we will generally assume that there is a filtration {Ft}t≥0 for which
the Brownian motion {Wt}t≥0 is an adapted process.

We will also assume that for s < t that the increment Wt −Ws is independent of
Fs . In other words, future increments are independent of available information.
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Brownian Motion

A Brownian motion {Wt}t≥0 exhibits the following properties:

E[Wt ] = 0 and Var(Wt) = t.

{Wt}t≥0 is a martingale.

Var(Wt |Fs) = t − s for s < t.

Cov(Wt ,Ws) = min{s, t}.

Sample paths are continuous but nowhere differentiable.
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Brownian Motion

Example

When performing calculations involving Brownian motion, it will often be useful to try
and express things in terms of increments. For example, consider the following proof
that Brownian motion is a martingale:

E[Wt |Fs ] = E[Wt −Ws + Ws |Fs ]

= E[Wt −Ws |Fs ] + E[Ws |Fs ]

= E[Wt −Ws ] + Ws

= 0 + Ws

= Ws .
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The Ito Integral
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Ito Integral - Motivation

In mathematical finance, we often find that we need to integrate with respect to
random increments.

In particular, we will look at objects of this form:∫ t

0
f (u) dXu ,

where {Xt}t≥0 is a stochastic process. We will often use the notation f (u) = fu
to express functions of time.

We say that the above expression is the Ito integral of the function f with respect
to the process {Xt}t≥0.

As a technical detail, we assume that there is a filtration {Ft}t≥0 such that Xt and
f (t) are both adapted processes. This essentially means that we know the values of
Xt and f (t) at time t.
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Ito Integral - Motivation

Recall the multiperiod binomial model with time periods 0, h, 2h, . . . ,T , in which
we introduced portfolio strategies θ = (θ0, θh, θ2h, . . . , θT−h). At time t, the
portfolio θt = (∆t , bt) represents the composition of the portfolio for the time
period (t, t + h).

The return of the position in the stock over (t, t + h) is

∆t(St+h − St) .

Then the total return from the stock over the time period is (with imprecise
notation) ∑

t

∆t(St+h − St) .

This calculation looks like the sum of the areas of a series of rectangles. The
height of each rectangle is ∆t and the width is St+h − St .
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Ito Integral - Motivation

In continuous time, we let the length of each period go to zero. Therefore the
total return from the stock in a continuous model should look something like:

lim
h→0

∑
t

∆t(St+h − St) .

This is a limit of the sum of the areas of rectangles, as the width of each
rectangle approaches zero. That is exactly what a Riemann(-Stieltjes) integral is.

Essentially the only difference here is that St is random. The Ito integral can be
understood as ∫ T

0
f (u) dXu = lim

h→0

∑
t

f (t)(Xt+h − Xt) .

Note that this is not entirely rigorous, and serves mainly to give some intuition.
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Ito Integral - Motivation

A rigorous and formal construction of the Ito integral is beyond the scope of this
course.

We will assume that the Ito integral is well-defined, and that expressions that look
like

∫ T
0 fu dXu make sense.

We will most often look at Ito integrals with respect to Brownian motion:∫ T

0
f (u) dWu .

These Ito integrals are nice because they satisfy a lot of desirable properties.
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Ito Integral - Properties

For each time t and a given stochastic process {ft}t≥0, define

It :=

∫ t

0
fu dWu

to be the Ito integral from time 0 to t, of the process {ft}t≥0 with respect to a
Brownian motion {Wt}t≥0.

Note that there is randomness in this process. Hence, the Ito integral is a random
variable, and {It}t≥0 is a stochastic process.

Recall that we also assume the existence of an underlying filtration {Ft}t≥0. With
respect to this filtration, {It}t≥0 is an adapted process.
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Ito Integral - Properties
The Ito integral exhibits the following:

{It}t≥0 has continuous sample paths.

The Ito integral is linear. That is,∫ t

0
afu + gu dWu = a

∫ t

0
fu dWu +

∫ t

0
gu dWu .

The process {It}t≥0 is a martingale. That is, if s ≤ t,

E[It |Fs ] = Is .

Interestingly, the converse statement is also true: every martingale can be written
as an Ito integral with respect to Brownian motion. This result is called the
Martingale Representation Theorem.
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Ito Integral - Properties
Since It is a random variable, we can also say a few things about its distribution.

E[It ] = I0 = 0, since the Ito integral is a martingale.

The variance can be calculated using the following result:

Proposition (Ito Isometry)

E[I 2t ] = E

[(∫ t

0
fu dWu

)2
]

= E
[∫ t

0
f 2u du

]
.

⇒ Hence, Var(It) = E[I 2t ] = E
[∫ t

0 f 2u du
]
.

More generally, if s ≤ t,

E[It |Fs ] = Is ,

Var(It |Fs) = E
[∫ t

s
f 2u du

∣∣∣∣Fs

]
.
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Ito Integral - Properties

If ft is deterministic in t, then It is normally distributed:

It ∼ N (0,Var(It)) .

If ft is not deterministic in t, then it is not possible to determine the shape of the
distribution of It in general.
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Ito Integral - Properties

Example

We can use the Ito isometry to determine the distribution of Wt , the value of a
Brownian motion at time t. Similar to the fundamental theorem of calculus, we can
write

Wt −W0 =

∫ t

0
dWu .

Since W0 = 0, by the Ito isometry, we have

Var(Wt) = E

[(∫ t

0
1 dWu

)2
]

= E
[∫ t

0
12 du

]
= E[t] = t .

We can conclude that
Wt ∼ N (0, t) ,

which is in line with what we know about the Brownian motion.
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Continuous-time Models
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Continuous-time Models - Stochastic Differential Equations

We usually write Ito integrals in differential form, using the following notation:

It =

∫ t

0
ft dWt ⇐⇒ dIt = ft dWt

A differential equation involving Ito integrals, written in differential form, is a
stochastic differential equation (SDE).

You may remember that an ordinary differential equation is an equation where the
derivative is taken with respect to one variable. For example, consider the
following ODE in differential form:

dBt = rBt dt ⇐⇒
dBt

dt
= rBt .
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Continuous-time Models - Differential Form
You may recall that the solution to this ODE is given by

Bt = Cert ,

where C is a constant.

If we impose the initial condition B0 = 1, then we get Bt = ert . This is the value
of 1 invested at a continuous interest rate r .

These three equations are different notation for the same thing:

dBt = rBt dt

dBt

dt
= rBt

BT − B0 =

∫ T

0
dBt =

∫ T

0
rBt dt .
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Continuous-time Models - Differential Form

Perhaps the nicest notation is the equation in its differential form:

dBt = rBt dt .

In this form, we can more easily interpret the meaning of this equation. Suppose
that Bt represents the value of an investment in a risk-free bank account.

Recall that dBt means, roughly, the change in the value of Bt . Similarly, dt
represents the change in time.

This equation says that the change in value of the investment is the rate r
multiplied by the current value of the investment and the change in time.
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Continuous-time Models - Ito Processes

We are finally ready to formulate a model of the market.

Continuous-time models are formulated in terms of Ito processes:

Definition (Ito Process)

An Ito process {Xt}t≥0 is a stochastic process of the form

dXt = αt dt + σt dWt ,

such that

X0 is a non-random initial condition,

Wt is a Brownian motion,

{αt}t≥0 is an adapted process, called the drift,

{σt}t≥0 is also an adapted process, called the diffusion or volatility.
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Continuous-time Models - Ito Processes
A sample path of an Ito process is given below:
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Continuous-time Models - Market Model

Note that the equation dXt = αt dt + σt dWt is just another way of writing

Xt = X0 +

∫ t

0
αt dt +

∫ t

0
σt dWt .

The interpretation here is that the change in X at time t is driven by two factors:

A factor of αt multiplied by the change in time,

A factor of σt multiplied by the change in value of an underlying random process.
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Continuous-time Models - Ito Processes

Consider a market with two assets: a risk-free asset B and a risky asset S . A
continuous-time market model is a specification of the behaviour of these assets
as Ito processes. These are also called the dynamics of these assets.

We have seen that a risk-free asset earning continuous interest is specified by

dBt = rBt dt .

On the other hand, the risky asset’s dynamics are specified more generally, by

dSt = αt dt + σt dWt .
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Continuous-time Models - Arithmetic Brownian Motion

One of the simplest Ito processes is the following:

Definition (Arithmetic Brownian Motion)

A stochastic process {Xt}t≥0 is an arithmetic Brownian motion (ABM) if it satisfies
the following SDE:

dXt = α dt + σ dWt ,

where α, σ are constants.

The example sample path from a few slides ago was an ABM.

We can show (as an exercise) that under this model, Xt ∼ N (X0 + αt, σ2t).
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Ito’s Lemma and
Geometric Brownian Motion
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Arithmetic Brownian Motion - Weaknesses

It turns out that the ABM dSt = α dt + σ dWt is not a great model for a stock
price St .

1 Since St is normally distributed, it could take negative values, which is not realistic.

2 Additionally, we see that the drift and diffusion do not depend on the level of St .
This may not be realistic either. We would typically expect that the return would
scale with the price of the stock.

To address the first issue, we could model the instantaneous rate of return as an
ABM instead:

d ln(St) = α dt + σ dWt .

Since a rate of return can be negative, this is not an issue.
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Geometric Brownian Motion

To address the second issue, we could introduce a factor of St in the drift and
diffusion terms:

dSt = αSt dt + σSt dWt .

Our goal for the remainder of this section is to show that these two models are
actually the same thing.

This model is the most important model of stock dynamics, and has a special
name:

Definition (Geometric Brownian Motion)

A stochastic process {Xt}t≥0 is an geometric Brownian motion (GBM) if it satisfies
the following SDE:

dXt = αXt dt + σXt dWt ,

where α, σ are constants.
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Geometric Brownian Motion - Motivating Example

Example

Recall that the risk-free asset Bt has dynamics given by

dBt = rBt dt .

Then by applying the chain rule, we have:

d ln(Bt)

dt
=

1

Bt
· dBt

dt

=
1

Bt
· rBt

= r

d ln(Bt) = r dt .
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Geometric Brownian Motion - Motivating Example

Example

Hence, we have shown that the two equations

dBt = rBt dt ,

d ln(Bt) = r dt ,

are the same model on the risk-free asset.

However, we used the chain rule to find d ln(Bt). Can we do the same thing to
find d ln(St) if St is a GBM?

The normal chain rule does not work for stochastic processes. We can see that
dSt/dt does not exist, since St is not differentiable!
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Ito-Doeblin Lemma
The following result serves as the analogue of the chain rule for stochastic
processes.

Theorem (Ito-Doeblin Lemma)

Let Xt be an Ito process with dXt = αt dt + σt dWt . Suppose f (t, x) is a function
such that the partial derivatives ft(t, x), fx(t, x), and fxx(t, x) are defined and
continuous. Then

df (t,Xt) = ft(t,Xt) dt + fx(t,Xt) dXt +
1

2
fxx(t,Xt)(dXt)

2 .

In this expression, the first two terms come from the chain rule for total
derivatives for regular functions. The third term is new in this case.

The proof of the Ito-Doeblin Lemma is beyond the scope of this course. A
second-order Taylor approximation plays a role, which is where the new term
comes from.
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Ito-Doeblin Lemma - Cross-Variation Terms
We see in the Ito-Doeblin Lemma that there is a (dXt)

2 term. Officially, this is the
cross-variation of Xt with itself, or the quadratic variation of Xt . We will use the
following rules to calculate these terms.

1 dt dt = 0. Very roughly, this is saying that

lim
h→0

∑
t

((t + h)− t)2 = 0 .

2 dt dWt = 0.

3 dWt dWt = dt.

4 If W
(1)
t and W

(2)
t are two Brownian motions with correlation ρ, then

dW
(1)
t dW

(2)
t = ρ dt

.
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Ito-Doeblin Lemma - Multivariate Case

The Ito-Doeblin Lemma can be extended to multiple variables. The two-variable
case is given below.

Theorem (Multivariate Ito-Doeblin Lemma)

Let Xt and Yt be Ito processes. Suppose f (t, x , y) is a twice-differentiable function.
Then

df (t,Xt ,Yt) = ft(t,Xt ,Yt) dt + fx(t,Xt ,Yt) dXt + fy (t,Xt ,Yt) dYt

+
1

2
fxx(t,Xt ,Yt)(dXt)

2 +
1

2
fyy (t,Xt ,Yt)(dYt)

2

+ fxy (t,Xt ,Yt) dXt dYt .
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Ito-Doeblin Lemma and the GBM

Example (Geometric Brownian Motion)

We can now use the Ito-Doeblin Lemma to determine d ln(St). Suppose that
dSt = αSt dt + σSt dWt . Let f (t,S) = ln(S).

Then ft = 0, fS = 1
S , and fSS = − 1

S2 . Therefore by the Ito-Doeblin Lemma, we have

d ln(St) = ft dt + fS dSt +
1

2
fSS(dSt)

2

=
1

St
dSt −

1

2S2
t

(dSt)
2

=
1

St
(αSt dt + σSt dWt)−

1

2S2
t

(αSt dt + σSt dWt)
2

= α dt + σ dWt −
1

2S2
t

σ2S2
t dt

=

(
α− σ2

2

)
dt + σ dWt .
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Ito-Doeblin Lemma and the GBM

We have proved the following:

Proposition

The logarithm of a GBM is an ABM. In particular, the following two SDEs have the
same solutions:

dSt = αSt dt + σSt dWt

d ln(St) =

(
α− σ2

2

)
dt + σ dWt
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GBM - Solution

In fact, we can get an explicit characterization of the solutions to GBMs.

Proposition (GBM Solution Form)

The unique solution to dSt = αSt dt + σSt dWt is given by

St = S0e

(
α−σ2

2

)
t+σWt .

Also, for all s ≤ t,

St = Sse

(
α−σ2

2

)
(t−s)+σ(Wt−Ws) .
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GBM - Solution

Proof.

By the result of the previous proposition, we have

d ln(St) =

(
α− σ2

2

)
dt + σ dWt .

Integrating this equation from time 0 to t gives∫ t

0
d ln(Su) =

∫ t

0

(
α− σ2

2

)
du +

∫ t

0
σ dWu

ln(St)− ln(S0) =

(
α− σ2

2

)
t + σWt .

The result follows by solving for St . The second equation follows similarly, by
integrating from s to t.
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GBM - Lognormal Distribution

We can also identify the distribution of the solution to the Geometric Brownian
Motion.

Definition (Lognormal Distribution)

We say that a random variable X is lognormally distributed if

ln(X ) ∼ N (µ̃, σ̃2) .

We use the notation
X ∼ logN (µ̃, σ̃2) .

Note that the parameters µ̃ and σ̃ are not the mean and variance of X .
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GBM - Lognormal Distribution

If X ∼ logN (µ̃, σ̃2), then

E[X ] = eµ̃+
σ̃2

2 ,

Var(X ) = (e σ̃
2 − 1)e2µ̃+σ̃2

.

This can be calculated from the moment generating function of the normal
distribution.

Proposition

If {St}t≥0 is a GBM with dSt = αSt dt + σSt dWt , then

St ∼ logN
(

ln(S0) +

(
α− σ2

2

)
t, σ2t

)
.
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GBM - Lognormal Distribution

Proof.

We have seen that

ln(St)− ln(S0) =

(
α− σ2

2

)
t + σWt .

Note that Wt ∼ N (0, t). It follows immediately that

ln(St) ∼ N
(

ln(S0) +

(
α− σ2

2

)
t, σ2t

)
,

which implies the result.
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GBM - Summary

The model of stock prices as Geometric Brownian Motion seems to be a
reasonable model that addresses shortcomings of the ABM.

The GBM is central to modern asset pricing theory, and is widely used in practice.

The GBM was the stochastic model used by Black and Scholes to obtain their
option pricing formulas. We will derive these formulas in the next part of this
course.
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GBM - Summary

However, the GBM is not without its drawbacks:

The GBM does not allow for jumps in the stock prices. Hence, it cannot model
the market impact of “black swan events” such as COVID-19. This is addressed
by jump-diffusion models.

The GBM assumes a constant volatility, whereas volatility in practice is stochastic.
This is addressed by stochastic volatility models.

Returns are assumed to be normally distributed, but in reality a distribution with a
heavier tail is observed. This is addressed by heavy-tail distributions.

The specifics of these more sophisticated models are beyond the scope of this course.
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GBM - Summary

This is the chart for the price of the S&P 500 over the last 10 years:
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GBM - Summary

This is a sample path of a Brownian motion dSt = 0.07St dt + 0.1St dWt . Does
this look like a reasonable model?
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